Math 728

Workshop I /02/05/2013

- Let X_1, X_2, \ldots be independent Bernoulli random variables, $X_i \sim \text{BIN}(1, p_i)$, and let $Y_n = \sum_{i=1}^n (X_i p_i)/n$. Show that the sequence Y_1, Y_2, \ldots converges stochastically to c = 0 as $n \to \infty$. Hint: Use the Chebychev inequality.
- Suppose that $Z_i \sim N(0, 1)$ and that Z_1, Z_2, \ldots are independent. Use moment generating functions to find the limiting distribution of $\sum_{i=1}^{n} (Z_i + 1/n)/\sqrt{n}$.
- β , Consider a random sample from a Poisson distribution, $X_i \sim POI(\mu)$.
 - (a) Show that $Y_n = e^{-\overline{X}_n}$ converges stochastically to $P[X = 0] = e^{-\mu}$.
 - (b) Find the asymptotic normal distribution of Y_n .
 - (c) Show that $\bar{X}_n \exp(-\bar{X}_n)$ converges stochastically to $P[X=1] = \mu e^{-\mu}$.
- Find the MLE for θ based on a random sample of size n from a distribution with pdf

$$f(x; \theta) = \begin{cases} 2\theta^2 x^{-3} & \theta \leq x \\ 0 & x < \theta; 0 < \theta \end{cases}$$

Let
$$X \sim \text{POI}(\mu)$$
, and let $\theta = P[X = 0] = e^{-\mu}$.

- (a) Is $\hat{\theta} = e^{-x}$ an unbiased estimator of θ ?
- (b) Show that $\tilde{\theta} = u(X)$ is an unbiased estimator of θ , where u(0) = 1 and u(x) = 0 if x = 1, 2, ...
- (c) Compare the MSEs of $\tilde{\theta}$ and $\tilde{\theta}$ for estimating $\theta = e^{-\mu}$ when $\mu = 1$ and $\mu = 2$.