HW#1:

- **4.1.2.** The weights of 26 professional baseball pitchers are given below; [see page 76 of Hettmansperger and McKean (2011) for the complete data set]. Suppose we assume that the weight of a professional baseball pitcher is normally distributed with mean μ and variance σ^2 .
 - - (a) Obtain a frequency distribution and a histogram or a stem-leaf plot of the data. Use 5-pound intervals. Based on this plot, is a normal probability model credible?
 - (b) Obtain the maximum likelihood estimates of μ , σ^2 , σ , and μ/σ . Locate your estimate of μ on your plot in part (a).
 - (c) Using the binomial model, obtain the maximum likelihood estimate of the proportion p of professional baseball pitchers who weigh over 215 pounds.
 - (d) Determine the mle of p assuming that the weight of a professional baseball player follows the normal probability model $N(\mu, \sigma^2)$ with μ and σ unknown.
 - **4.1.6.** Show that the estimate of the pmf in expression (4.1.9) is an unbiased estimate. Find the variance of the estimator also.
 - **4.4.5.** Let $Y_1 < Y_2 < Y_3 < Y_4$ be the order statistics of a random sample of size 4 from the distribution having pdf $f(x) = e^{-x}$, $0 < x < \infty$, zero elsewhere. Find $P(Y_4 \ge 3)$.
 - **4.4.9.** Let $Y_1 < Y_2 < \cdots < Y_n$ be the order statistics of a random sample of size n from a distribution with pdf f(x) = 1, 0 < x < 1, zero elsewhere. Show that the kth order statistic Y_k has a beta pdf with parameters $\alpha = k$ and $\beta = n k + 1$.
 - **5.1.2.** Let the random variable Y_n have a distribution that is b(n, p).
 - (a) Prove that Y_n/n converges in probability to p. This result is one form of the weak law of large numbers.
 - (b) Prove that $1 Y_n/n$ converges in probability to 1 p.
 - (c) Prove that $(Y_n/n)(1-Y_n/n)$ converges in probability to p(1-p).
 - **5.1.3.** Let W_n denote a random variable with mean μ and variance b/n^p , where p > 0, μ , and b are constants (not functions of n). Prove that W_n converges in probability to μ .

Hint: Use Chebyshev's inequality.

5.2.1. Let \overline{X}_n denote the mean of a random sample of size n from a distribution that is $N(\mu, \sigma^2)$. Find the limiting distribution of \overline{X}_n .