
Math 728 - Homework # 1 - Peter Lewis
Exercise 4.1.2. The weights of 26 professional baseball pitchers are given below. Suppose
we assume that the weight of a professional baseball pitcher is normally distributed with
mean µ and variance σ2.

160 175 180 185 185 185 190 190 195 195 195 200 200

200 200 205 205 210 210 218 219 220 222 225 225 232

(a) Obtain a frequency distribution and a histogram or a stem-leaf plot of the data. Use
5-pound intervals. Based on this plot, is a normal probability model credible?

Solution: Based on the above data, I have constructed the following histogram, in
which the intervals of weights are of the form [a, a+ 5).
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Based on this plot, a normal probability model does not seem credible.

(b) Obtain the maximum likelihood estimators of µ, σ2, σ, and µ/σ. Locate your estimate
of µ on your plot in part (a).

Solution: Let f(x;µ, σ) be the pdf of the normal population. Then the likelihood
function is

L(µ, σ;x) =
26∏
i=1

f(xi;µ, σ)

=
26∏
i=1

1√
2πσ2

exp

{
−(xi − µ)2

2σ2

}

= (2πσ2)−13exp

{
− 1

2σ2

26∑
i=1

(xi − µ)2

}
.
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So, log likelihood follows as

l(µ, σ;x) = ln
(
L(µ, σ;x)

)
= −13ln(2πσ2)− 1

2σ2

26∑
i=1

(xi − µ)2.

• Now, to find the MLE of µ, we have

∂l(µ, σ;x)

∂µ
=

1

2σ2

26∑
i=1

(xi − µ),

and
∂l(µ, σ;x)

∂µ
= 0 =⇒ µ =

1

26

26∑
i=1

xi ≈ 200.6.

Since
∂2l(µ, σ;x)

∂µ2
= −13

σ2
< 0,

x̄ maximizes l, and hence µ̂ = X̄ is the MLE of µ.

• For the MLE of σ2, we have

∂l(µ, σ;x)

∂σ2
= −13

σ2
+

1

2σ4

26∑
i=1

(xi − µ)2 = 0 =⇒ σ2 =
1

26

26∑
i=1

(xi − µ)2 ≈ 293.92,

and

∂2l(µ, σ;x)

∂(σ2)2
=

13

σ4
− 1

σ6

26∑
i=1

(xi − µ)2 =
1

σ4

[
13− 1

σ2

26∑
i=1

(xi − µ)2

]
.

If σ2 = 1
26

∑26
i=1(xi − µ)2, we have

13− 1

σ2

26∑
i=1

(xi − µ)2 = 13− 26 < 0.

Hence, σ̂2 = 1
26

∑26
i=1(Xi − µ)2 is the MLE of σ2.

• By the invariance property of MLEs, we have σ̂ =
√

1
26

∑26
i=1(Xi − µ)2 ≈ 17.14 is

the MLE of σ.

• The MLE of µ/σ is approximately 200.6/17.14 ≈ 11.7
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(c) Using the binomial model, obtain the maximum likelihood estimate of the proportion
p of professional baseball pitchers who weigh over 215 pounds.

Solution: Notice that there are 7 players above 215 pounds. If we assume a binomial
model, our likelihood function is just the pmf of Binomial(26,p):

L =

(
26

x

)
px(1− p)26−x.

We ignore the
(

26
x

)
constant, as we’re maximizing in p. So, differentiate in p:

xpx−1(1− p)26−x − (26− x)(1− p)25−xpx = px−1(1− p)25−x[x(1− p)− (26− x)p]

= px−1(1− p)25−x[x− 26p],

and equating to zero yields p = x/26.

=⇒ p̂ = 7/26 is the MLE of p.

(d) Determine the mle of p assuming that the weight of a professional baseball player
follows the normal probability model N(µ, σ2) with µ and σ unknown.

Solution: Using the MLE results in part (b), we integrate the normal pdf from 215
to infinity (by computer) to yield approximately 0.2.

Exercise 4.1.6. Show that the estimate of the pmf in expression (4.1.9) is an unbiased
estimate. Find the variance of the estimator also.

Solution: The expression (4.1.9) is

p̂(aj) =
1

n

n∑
i=1

Ij(Xi),

where

Ij(Xi) =

{
1 Xi = aj
0 Xi 6= aj

,

and the sample space is D = {a1, . . . , an}.

Now, we have

E

[
1

n

n∑
i=1

Ij(Xi)

]
=

1

n

n∑
i=1

E[Ij(Xi)] =
1

n

n∑
i=1

P (Xi = aj) =
1

n
nP (Xi = aj) = p(aj).

Hence, p̂(aj) is an unbiased estimator of p(aj).

Now, the variance of the estimator is

V ar(p̂(aj)) = V ar

(
1

n

n∑
i=1

Ij(Xi)

)
=

1

n
V ar(Ij(Xi)) =

1

n
p(aj)

(
1− p(aj)

)
.
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Exercise 4.4.5. Let Y1 < Y2 < Y3 < Y4 be the order statistics of a random sample of size
4 from the distribution having pdf f(x) = e−x, 0 < x <∞, zero elsewhere. Find P (Y4 ≥ 3).

Solution: Let X be a random variable with pdf f(x). We have

P (Y4 ≥ 3) = 1− P (Y4 < 3)

= 1−
(
P (X < 3)

)4

= 1−
(∫ 3

0

e−xdx

)4

= 1−
(
1− e−3

)4
.

Exercise 4.4.9. Let Y1 < Y2 < . . . < Yn be the order statistics of a random sample of size
n from a distribution with pdf f(x) = 1, 0 < x < 1, zero elsewhere. Show that the kth order
statistic Yk has a beta pdf with parameters α = k and β = n− k + 1.

Solution: Let gk(yk) denote the pdf of Yk, and F (yk) the cdf of Yk. Then, using the
formula for kth order statistic pdf, we have

gk(yk) =

{
n!

(k−1)!(n−k)!
[F (yk)]

k−1[1− F (yk)]
n−kf(yk) 0 < yk < 1

0 elsewhere

=

{
n!

(k−1)!(n−k)!
yk−1
k (1− yk)n−k 0 < yk < 1

0 elsewhere

=

{
Γ(k+n−k+1)

Γ(k)Γ(n−k+1)
yk−1
k (1− yk)n−k+1−1 0 < yk < 1

0 elsewhere

=

{
Γ(α+β)

Γ(α)Γ(β)
yα−1
k (1− yk)β−1 0 < yk < 1

0 elsewhere
.

Hence, the kth order statistic Yk has a beta pdf with parameters α = k and
β = n− k + 1.

Exercise 5.1.2. Let the random variable Yn have a distribution that is b(n, p).

(a) Prove that Yn/n converges in probability to p. This result is one form of the weak law
of large numbers.

Proof: Let {Xn} be a sequence of Bernoulli random variables with parameter p.
So, E[Xi] = p, V ar(Xi) = p(1− p) <∞ for all i ∈ N. Then,

∑n
i=1 Xi = Yn. Hence,

by the weak law of large numbers, we have that

Yn
n

= X̄n =
1

n

n∑
i=1

Xi
P−→ E[Xi] = p.
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(b) Prove that 1− Yn/n converges in probability to 1− p.

Proof: By part (a), we have

P (|1− Yn/n− (1− p)| > ε) = P (|Yn/n− p| > ε) −−−→
n→∞

0.

Hence, 1− Yn/n
P−→ 1− p.

(c) Prove that (Yn/n)(1− Yn/n) converges in probability to p(1− p).

Proof: Using the theorem in the section, since Yn/n
P−→ p and (1−Yn/n)

P−→ (1−p),
we have that Yn/n(1− Yn/n)

P−→ p(1− p).

Exercise 5.1.3. Let Wn denote a random variable with mean µ and variance b/np, where
p > 0, µ, and b are constants (not functions of n). Prove that Wn converges in probability
to µ.

Proof: Using Chebyshev’s inequality, we have

P (|Wn − µ| ≥ ε) ≤ V ar(Wn)

ε2
=
b/np

ε2
−−−→
n→∞

0.

Hence, by definition of convergence in probability, Wn
P−→ µ.

Exercise 5.2.1. Let X̄n denote the mean of a random sample of size n from a distribution
that is N(µ, σ2). Find the limiting distribution of X̄n.

Solution: We look at the limiting behavior of the cdf of X̄n. Since the sum of
normal random variables is normal with sum of parameters, we have

FX̄n
(t) = P (X1 + . . . Xn ≤ nt)

=

∫ nt

−∞

1√
2πnσ2

exp

{
−(x− nµ)2

2nσ2

}
dx

=

∫ nt

−∞

1√
2πnσ2

exp

−
(
x−nµ√
nσ

)2

2

 dx.

Now, change variables as

u =
x− nµ√

nσ

=⇒ du =
1√
nσ

dx,
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which yields

∫ nt

−∞

1√
2πnσ2

exp

−
(
x−nµ√
nσ

)2

2

 dx =

∫ √n(t−µ)/σ

−∞

1√
2π
e−u

2/2du

−−−→
n→∞


0 t < µ
1/2 t = µ
1 t > µ

.

Now, note that

F (t) :=

{
0 t < µ
1 t ≥ µ

is a cdf and limn→∞FX̄n
(t) = F (t) at every continuity point t of F (t). Hence, FX̄n

converges in distribution to a random variable that has a degenerate distribution
at t = µ.
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