Logan Godkin

Statistics Math 728 Homework 2

4.2.1 Let the observed value of the mean \overline{X} and of the sample variance of a random sample of size 20 from a distribution that is $N(\mu, \sigma^2)$ be 81.2 and 26.5, respectively. Find respectively 90%, 95%, and 99% confindence intervals for μ .

Solution. We use algebra derivation given in Example 4.2.1.

For 90%: $1 - \alpha = .9 \implies \alpha = .1$. There are 20 - 1 = 19 degrees of freedom. Thus the lower limit is $81.2 - (1.729)(\frac{\sqrt{26.5}}{\sqrt{20}}) = 79.209$ and the uppr limit is $81.2 + (1.729)(\frac{\sqrt{26.5}}{\sqrt{20}}) = 83.190$. So (79.21, 83.19) is the interval with 90% confidence.

For 95%: $1 - \alpha = .95 \implies \alpha = .05$. There are 20 - 1 = 19 degrees of freedom. Thus the lower limit is $81.2 - (2.093)(\frac{\sqrt{26.5}}{\sqrt{20}}) = 78.791$ and the uppr limit is $81.2 + (2.093)(\frac{\sqrt{26.5}}{\sqrt{20}}) = 83.609$. So (78.79, 83.61) is the interval with 95% confidence.

For 99%: $1 - \alpha = .99 \implies \alpha = .01$. There are 20 - 1 = 19 degrees of freedom. Thus the lower limit is $81.2 - (2.861)(\frac{\sqrt{26.5}}{\sqrt{20}}) = 77.907$ and the uppr limit is $81.2 + (2.861)(\frac{\sqrt{26.5}}{\sqrt{20}}) = 84.493$. So (77.91, 84.49) is the interval with 95% confidence.

4.2.12 Let Y be b(300, p). If the observed value of Y is y = 75, find an approximate 90% confidence interval for p.

Solution. We have n = 300 and a porportion p = 75/300 = .25. We have $1 - \alpha = .90 \implies \alpha = .1$ Thus $z_{\alpha/2} = 1.645$. Thus the lower limit is $.25 - (1.645)(\frac{\sqrt{.25(1-.25)}}{\sqrt{300}}) = .209$ and the upper limit is $.25 + (1.645)(\frac{\sqrt{.25(1-.25)}}{\sqrt{300}}) = .291$. Hence we have a 90% confidence interval for (.21, .29).

4.2.17 It is known that a random variable X has Poisson distribution with parameter μ . A sample of 200 observation from this distribution has a mean equal to 3.4. Construct an approximate 90% confidence interval for μ .

Solution. Since X has the Poisson distribution the mean of X is equal to the variance. We have $1 - \alpha = .9 \implies \alpha = .1$. Thus $z_{\alpha/2} = 1.645$. Then the lower limit is $3.4 - (1.645)(\frac{\sqrt{3.4}}{\sqrt{200}}) = 3.186$ and the upper limit is $3.4 + (1.645)(\frac{\sqrt{3.4}}{\sqrt{200}}) = 3.614$. Hence we have a 90% confidence interval for (3.19, 3.61).

- 4.2.18 Let X_1, \ldots, X_n be a random sample from $N(\mu, \sigma^2)$, where both parameters μ and σ are unkown. A confidence interval for σ^2 can be found as follows. We know that $(n-1)S^2/\sigma^2$ is a random variable with $\chi^2(n-1)$ distribution. Thus we can find constants a and b so that $P((n-1)S^2/\sigma^2 < b) = 0.975$ and $P(a < (n-1)S^2/\sigma^2 < b) = 0.95$.
 - (a) Show that this second probability statement can be written as

$$P((n-1)S^2/b < \sigma^2 < (n-1)S^2/a) = 0.95.$$

Proof. We have

$$a < \frac{(n-1)S^2}{\sigma^2} < b \iff \frac{1}{b} < \frac{\sigma^2}{(n-1)S^2} < \frac{1}{a} \iff \frac{(n-1)S^2}{b} < \sigma^2 < \frac{(n-1)S^2}{a}.$$

Thus $P(a < (n-1)S^2/\sigma^2 < b) = 0.95 \iff P((n-1)S^2/b < \sigma^2 < (n-1)S^2/a) = 0.95.$

(b) If n = 9 and $s^2 = 7.93$, find a 95% confidence interval for σ^2 .

Solution. If n = 9 and $s^2 = 7.93$, then $(n - 1)S^2$ is (9 - 1)(7.93) = 63.44, a = 2.180, and b = 17.535. Thus the lower limit is 63.44/17.535 = 3.618 and the upper limit is 63.44/2.18 = 29.101. Thus we have 95% confidence for the interval (3.62, 29.10).

(c) If μ is known, how would you modify the proceeding procedure for finding a confidence interval σ^2 ?

Solution. We know that $\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2$ is $\chi^2(n)$. Then we use $\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2$ in place of $(n-1)S^2/\sigma^2$.

4.2.21 Let two independent random samples, each of size 10, from two normal distributions $N(\mu_1, \sigma^2)$ and $N(\mu_2, \sigma^2)$ yield $\overline{x} = 4.8$, $s_1^2 = 8.64$, $\overline{y} = 5.6$, $s_2^2 = 7.88$. Find a 95% confidence interval for $\mu_1 - \mu_2$.

Solution. We use equation 4.2.13. We have $n_1 = n_1 = 10$. Thus $n = n_1 + n_2 = 20$. We have $1 - \alpha = .95 \implies \alpha = .05$. Then $t_{.025,18} = 2.101$. Thus the lower limit is

$$(4.8 - 5.6) - (2.101)\sqrt{\frac{(9)(8.64) + (9)(7.88)}{18}}\sqrt{\frac{1}{10} + \frac{1}{10}} = -3.5$$

and the upper limit is

$$(4.8 - 5.6) + (2.101)\sqrt{\frac{(9)(8.64) + (9)(7.88)}{18}}\sqrt{\frac{1}{10} + \frac{1}{10}} = 1.9$$

Thus we have a 95% confidence interval for (-3.5, 1.9).

4.2.22 Let two independent random variables, Y_1 and Y_2 , with binomial distributions that have parameters $n_1 = n_2 = 100$, p_1 , and p_2 , respectively, be observed to be equal to $y_1 = 50$ and $y_2 = 40$. Determine an approximate 90% confidence interval for $p_1 - p_2$.

Solution. We use equation 4.2.14. We have $p_1 = 50/100 = .5$ and $p_2 = 40/100 = .4$. We find $z_{\alpha/2}$ for $\alpha = .1$. Then $z_{\alpha/2} = 1.645$. Thus the lower limit is

$$(.5 - .4) - (1.645)\sqrt{\frac{(.5)(.5)}{100} + \frac{(.4)(.6)}{100}} = -.015$$

and the upper limit is

$$(.5 - .4) - (1.645)\sqrt{\frac{(.5)(.5)}{100} + \frac{(.4)(.6)}{100}} = .215.$$

Thus we have a 90% confidence interval for (-.02, .22).

4.2.27 Let X_1, \ldots, X_n and Y_1, \ldots, Y_m be two independent random samples from the respective normal distributions $N(\mu_1, \sigma_1^2)$ and $N(\mu_2, \sigma_2^2)$, where the four parameters are unknown. To construct a confidence interval for the ratio, σ_1^2/σ_2^2 , of the variances, form the quotient of the two independent χ^2 variables, each divided by its degrees of freedom, namely,

$$F = \frac{\frac{(m-1)S_2^2}{\sigma_2^2}/(m-1)}{\frac{(n-1)S_1^2}{\sigma_1^2}/(n-1)},$$

where S_1^2 and S_2^2 are the respective sample variances.

(a) What kind of distribution does F have?

Solution. $U = (m-1)S_2^2$ has $\chi^2(m-1)$ distribution and $V = (n-1)S_1^2$ has $\chi^2(n-1)$ distribution. Thus be equation 3.6.7 in the text

$$F = \frac{U/r_1}{V/r_2},$$

where $r_1 = m - 1$ and $r_2 = n - 1$, has *F*-distribution.

(b) From the appropriate table, a and b can be found so that P(F < b) = 0.975 and P(a < F < b) = 0.95.

Solution. For
$$P(F < b) = 0.975$$
, $b = F_{.025}(m - 1, n - 1)$. For $P(a < F < b) = 0.95$, $b = F_{.05}(m - 1, n - 1)$ and $a = 1/b$.

 \triangle

 \triangle

 \triangle

(c) Rewrite the second probability statement as

$$P\left[a\frac{S_1^2}{S_2^2} < \frac{\sigma_1^2}{\sigma_2^2} < b\frac{S_1^2}{S_2^2}\right] = 0.95.$$

The observed values, s_1^2 and s_2^2 , can be inserted in these inequalities to provide a 95% confidence interval for σ_1^2/σ_2^2 .

Solution. We have

$$F = \frac{\frac{(m-1)S_2^2}{\sigma_2^2}/(m-1)}{\frac{(m-1)S_1^2}{\sigma_1^2}/(n-1)} = \frac{\frac{(m-1)S_2^2}{(m-1)\sigma_2^2}}{\frac{(n-1)S_1^2}{(n-1)\sigma_1^2}} = \frac{S_2^2\sigma_1^2}{S_1^2\sigma_2^2}.$$

Thus

Hence

$$a < \frac{S_2^2 \sigma_1^2}{S_1^2 \sigma_2^2} < b \iff a \frac{S_1^2}{S_2^2} < \frac{\sigma_1^2}{\sigma_2^2} < b \frac{S_1^2}{S_2^2}.$$
$$P\left[a \frac{S_1^2}{S_2^2} < \frac{\sigma_1^2}{\sigma_2^2} < b \frac{S_1^2}{S_2^2}\right] = 0.95.$$

Λ	
L	7